

Inclusive B Decays

Gil Paz

Department of Physics and Astronomy, Wayne State University

• Inclusive B Decay: $\bar{B} \to X_c \, \ell \, \bar{\nu}$, $\bar{B} \to X_u \, \ell \, \bar{\nu}$, $\bar{B} \to X_s \gamma$, $\bar{B} \to X_s \, \ell^+ \ell^-$ Why study inclusive B decays?

- Inclusive B Decay: $\bar{B} \to X_c \, \ell \, \bar{\nu}$, $\bar{B} \to X_u \, \ell \, \bar{\nu}$, $\bar{B} \to X_s \gamma$, $\bar{B} \to X_s \, \ell^+ \ell^-$ Why study inclusive B decays?
- Precision determination of fundamental parameters: $|V_{cb}|$, $|V_{ub}|$, m_b Unresolved tension for $|V_{cb}|$ & $|V_{ub}|$: Inclusive > Exclusive

- Inclusive B Decay: $\bar{B} \to X_c \, \ell \, \bar{\nu}$, $\bar{B} \to X_u \, \ell \, \bar{\nu}$, $\bar{B} \to X_s \gamma$, $\bar{B} \to X_s \, \ell^+ \ell^-$ Why study inclusive B decays?
- Precision determination of fundamental parameters: $|V_{cb}|$, $|V_{ub}|$, m_b Unresolved tension for $|V_{cb}|$ & $|V_{ub}|$: Inclusive > Exclusive
- Important probe of new physics: e.g $\bar{B} \to X_s \gamma$ $\bar{B} \to X_s \gamma$ constrained/constrains/will constrain models of new physics

- Inclusive B Decay: $\bar{B} \to X_c \, \ell \, \bar{\nu}$, $\bar{B} \to X_u \, \ell \, \bar{\nu}$, $\bar{B} \to X_s \gamma$, $\bar{B} \to X_s \, \ell^+ \ell^-$ Why study inclusive B decays?
- Precision determination of fundamental parameters: $|V_{cb}|$, $|V_{ub}|$, m_b Unresolved tension for $|V_{cb}|$ & $|V_{ub}|$: Inclusive > Exclusive
- Important probe of new physics: e.g $\bar{B} \to X_s \gamma$ $\bar{B} \to X_s \gamma$ constrained/constrains/will constrain models of new physics
- Theoretically clean: $m_b \gg \Lambda_{\rm QCD} \Rightarrow$ observables expanded as a power series in $\Lambda_{\rm QCD}/m_b$

- Inclusive B Decay: $\bar{B} \to X_c \, \ell \, \bar{\nu}$, $\bar{B} \to X_u \, \ell \, \bar{\nu}$, $\bar{B} \to X_s \gamma$, $\bar{B} \to X_s \, \ell^+ \ell^-$ Why study inclusive B decays?
- Precision determination of fundamental parameters: $|V_{cb}|$, $|V_{ub}|$, m_b Unresolved tension for $|V_{cb}|$ & $|V_{ub}|$: Inclusive > Exclusive
- Important probe of new physics: e.g $\bar{B} \to X_s \gamma$ $\bar{B} \to X_s \gamma$ constrained/constrains/will constrain models of new physics
- Theoretically clean: $m_b \gg \Lambda_{\rm QCD} \Rightarrow$ observables expanded as a power series in $\Lambda_{\rm QCD}/m_b$
- Theoretically interesting: tests basic QFT tools: factorization, OPE Local OPE $\bar{B} \to X_c \ \ell \ \bar{\nu}$: α_s^2 , $\alpha_s \Lambda_{\rm QCD}^2/m_b^2$, $\Lambda_{\rm QCD}^3/m_b^3$, $\Lambda_{\rm QCD}^4/m_b^4$, $\Lambda_{\rm QCD}^5/m_b^5$

- Inclusive B Decay: $\bar{B} \to X_c \, \ell \, \bar{\nu}$, $\bar{B} \to X_u \, \ell \, \bar{\nu}$, $\bar{B} \to X_s \gamma$, $\bar{B} \to X_s \, \ell^+ \ell^-$ Why study inclusive B decays?
- Precision determination of fundamental parameters: $|V_{cb}|$, $|V_{ub}|$, m_b Unresolved tension for $|V_{cb}|$ & $|V_{ub}|$: Inclusive > Exclusive
- Important probe of new physics: e.g $\bar{B} \to X_s \gamma$ $\bar{B} \to X_s \gamma$ constrained/constrains/will constrain models of new physics
- Theoretically clean: $m_b \gg \Lambda_{\rm QCD} \Rightarrow$ observables expanded as a power series in $\Lambda_{\rm QCD}/m_b$
- Theoretically interesting: tests basic QFT tools: factorization, OPE Local OPE $\bar{B} \to X_c \ \ell \ \bar{\nu}$: α_s^2 , $\alpha_s \Lambda_{\rm QCD}^2/m_b^2$, $\Lambda_{\rm QCD}^3/m_b^3$, $\Lambda_{\rm QCD}^4/m_b^4$, $\Lambda_{\rm QCD}^5/m_b^5$
- Large impact: Top cited papers: CLEO #1 ($b \rightarrow s \gamma$ '95), Belle #3 ($b \rightarrow s \gamma$ '01) Theoretical predictions: hundreds of citations

•
$$\bar{B} \to X_c \, \ell \, \bar{\nu} \, \left[d\Gamma = \sum_n \frac{1}{m_b^n} c_n \langle O_n \rangle \right]$$

Present: c_0 at $\mathcal{O}(\alpha_s)$ [Trott '04; Aquila, Gambino, Ridolfi, Uraltsev '05]

 c_2 at $\mathcal{O}(\alpha_s^0)$ [Blok, Koyrakh, Shifman, Vainshtein '93; Manohar, Wise '93]

 c_3 at $\mathcal{O}(\alpha_s^0)$ [Gremm, Kapustin '96]

$$\begin{array}{l} \bullet \ \, \bar{B} \to X_c \, \ell \, \bar{\nu} \, \left[\, d\Gamma = \sum_n \frac{1}{m_b^n} c_n \langle O_n \rangle \right] \\ Present: \, c_0 \, \text{at} \, \mathcal{O}(\alpha_s) \, [\text{Trott '04; Aquila, Gambino, Ridolfi, Uraltsev '05]} \\ c_2 \, \text{at} \, \mathcal{O}(\alpha_s^0) \, [\text{Blok, Koyrakh, Shifman, Vainshtein '93; Manohar, Wise '93]} \\ c_3 \, \text{at} \, \mathcal{O}(\alpha_s^0) \, [\text{Gremm, Kapustin '96]} \\ Future: \, c_0 \, \text{at} \, \mathcal{O}(\alpha_s^2) \, [\text{Melnikov '08; Pak, Czarnecki '08]} \\ c_2^K \, \text{at} \, \mathcal{O}(\alpha_s) \, numerically \, [\text{Becher, Boos, Lunghi '07]} \\ c_2^K \, \text{at} \, \mathcal{O}(\alpha_s) \, analytically \, [\text{Alberti, Ewerth, Gambino, Nandi, '12]} \\ c_2^G \, \text{at} \, \mathcal{O}(\alpha_s) \, \text{in progress [Alberti, Ewerth, Gambino, Nandi, '##]} \\ c_4 \, \text{and} \, c_5 \, \text{at} \, \mathcal{O}(\alpha_s^0) \, [\text{Mannel, Turczyk, Uraltsev '09]} \\ \end{array}$$

RED: USA BLUE: EUROPE

$$\begin{array}{l} \bullet \ \, \bar{B} \to X_c \, \ell \, \bar{\nu} \, \left[\, d\Gamma = \sum_n \frac{1}{m_p^n} c_n \langle O_n \rangle \right] \\ Present: \, c_0 \, \text{at} \, \mathcal{O}(\alpha_s) \, \left[\text{Trott '04; Aquila, Gambino, Ridolfi, Uraltsev '05} \right] \\ c_2 \, \text{at} \, \mathcal{O}(\alpha_s^0) \, \left[\text{Blok, Koyrakh, Shifman, Vainshtein '93; Manohar, Wise '93} \right] \\ c_3 \, \text{at} \, \mathcal{O}(\alpha_s^0) \, \left[\text{Gremm, Kapustin '96} \right] \\ Future: \, c_0 \, \text{at} \, \mathcal{O}(\alpha_s^2) \, \left[\text{Melnikov '08; Pak, Czarnecki '08} \right] \\ c_2^K \, \text{at} \, \mathcal{O}(\alpha_s) \, numerically \, \left[\text{Becher, Boos, Lunghi '07} \right] \\ c_2^K \, \text{at} \, \mathcal{O}(\alpha_s) \, analytically \, \left[\text{Alberti, Ewerth, Gambino, Nandi, '12} \right] \\ c_2^G \, \text{at} \, \mathcal{O}(\alpha_s) \, \text{in progress } \, \left[\text{Alberti, Ewerth, Gambino, Nandi, '##} \right] \\ c_4 \, \text{and} \, c_5 \, \text{at} \, \mathcal{O}(\alpha_s^0) \, \left[\text{Mannel, Turczyk, Uraltsev '09} \right] \\ \end{array}$$

•
$$\bar{B} \to X_u \, \ell \, \bar{\nu} \, \left[d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + \frac{1}{m_b} \sum_i H \cdot j_i \otimes S + \mathcal{O}\left(\frac{\Lambda_{\rm QCD}^2}{m_b^2}\right) \right]$$

Present: H, J at $\mathcal{O}(\alpha_s)$ [Bauer, Manohar '03; Bosch, Lange, Neubert, GP '04]
 s_i at $\mathcal{O}(\alpha_s^0)$ [K. Lee, Stewart '04; Bosch, Neubert, GP '04; Beneke, Campanario, Mannel, Pecjak '04]

Gil Paz (Wayne State University)

•
$$\bar{B} \to X_c \, \ell \, \bar{\nu} \, \left[d\Gamma = \sum_n \frac{1}{m_b^n} c_n \langle O_n \rangle \right]$$

Present: c_0 at $\mathcal{O}(\alpha_s)$ [Trott '04; Aquila, Gambino, Ridolfi, Uraltsev '05]

 c_2 at $\mathcal{O}(\alpha_s^0)$ [Blok, Koyrakh, Shifman, Vainshtein '93; Manohar, Wise '93]

 c_3 at $\mathcal{O}(\alpha_s^0)$ [Gremm, Kapustin '96]

Future: c_0 at $\mathcal{O}(\alpha_s^2)$ [Melnikov '08; Pak, Czarnecki '08]

 c_s^K at $\mathcal{O}(\alpha_s)$ numerically [Becher, Boos, Lunghi '07]

 c_s^K at $\mathcal{O}(\alpha_s)$ analytically [Alberti, Ewerth, Gambino, Nandi, '12]

 c_s^G at $\mathcal{O}(\alpha_s)$ in progress [Alberti, Ewerth, Gambino, Nandi, '##]

 c_4 and c_5 at $\mathcal{O}(\alpha_s^0)$ [Mannel, Turczyk, Uraltsev '09]

• $\bar{B} \to X_u \, \ell \, \bar{\nu} \, \left[d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + \frac{1}{m_b} \sum_i H \cdot j_i \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{m_b^2}\right) \right]$

Present: H , J at $\mathcal{O}(\alpha_s^0)$ [Bauer, Manohar '03; Bosch, Lange, Neubert, GP '04]

 s_i at $\mathcal{O}(\alpha_s^0)$ [K. Lee, Stewart '04; Bosch, Neubert, GP '04; Beneke, Campanario, Mannel, Pecjak '04]

Future: J at $\mathcal{O}(\alpha_s^2)$ [Becher, Neubert '06]

 H at $\mathcal{O}(\alpha_s^2)$ [Bonciani, Ferroglia '08; Asatrian, Greub, Pecjak '08; Beneke, Huber, Li '08; Bell '08]

 j_i at $\mathcal{O}(\alpha_s^2)$ [Burcherseifer, Caola, Melnikov '13]

•
$$\bar{B} \to X_c \, \ell \, \bar{\nu} \, \left[d\Gamma = \sum_n \frac{1}{m_p^n} c_n \langle O_n \rangle \right]$$

Present: c_0 at $\mathcal{O}(\alpha_s)$ [Trott '04; Aquila, Gambino, Ridolfi, Uraltsev '05]

 c_2 at $\mathcal{O}(\alpha_s^0)$ [Blok, Koyrakh, Shifman, Vainshtein '93; Manohar, Wise '93]

 c_3 at $\mathcal{O}(\alpha_s^0)$ [Gremm, Kapustin '96]

Future: c_0 at $\mathcal{O}(\alpha_s^0)$ [Melnikov '08; Pak, Czarnecki '08]

 c_2^K at $\mathcal{O}(\alpha_s)$ numerically [Becher, Boos, Lunghi '07]

 c_2^K at $\mathcal{O}(\alpha_s)$ analytically [Alberti, Ewerth, Gambino, Nandi, '12]

 c_2^G at $\mathcal{O}(\alpha_s)$ in progress [Alberti, Ewerth, Gambino, Nandi, '##]

 c_4 and c_5 at $\mathcal{O}(\alpha_s^0)$ [Mannel, Turczyk, Uraltsev '09]

• $\bar{B} \to X_u \, \ell \, \bar{\nu} \, \left[d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + \frac{1}{m_b} \sum_i H \cdot j_i \otimes S + \mathcal{O}\left(\frac{\Lambda_{\rm QCD}^2}{m_b^2}\right) \right]$

Present: H , J at $\mathcal{O}(\alpha_s^0)$ [Bauer, Manohar '03; Bosch, Lange, Neubert, GP '04]

 s_i at $\mathcal{O}(\alpha_s^0)$ [K. Lee, Stewart '04; Bosch, Neubert, GP '04; Beneke, Campanario, Mannel, Pecjak '04]

Future: J at $\mathcal{O}(\alpha_s^2)$ [Becher, Neubert '06]

 H at $\mathcal{O}(\alpha_s^2)$ [Bonciani, Ferroglia '08; Asatrian, Greub, Pecjak '08; Beneke, Huber, Li '08; Bell '08]

 j_i at $\mathcal{O}(\alpha_s^2)$ [Burcherseifer, Caola, Melnikov '13]

• $\bar{B} \to X_s \gamma$

Leading power NNLO $\mathcal{O}(\alpha_s^2)$ [Misiak et al. '07]

 $\Lambda_{\rm QCD}/m_b$ corrections at $\mathcal{O}(\alpha_s^0)$ [Benzke, S. Lee, Neubert, GP '10]

Some $\Lambda_{\rm QCD}^2/m_b^2$ corrections [Kaminski, Misiak, Poradzinski '12]

Some $\alpha_s \Lambda_{\rm QCD}^2/m_b^2$ corrections [Ewerth, Gambino, Nandi '10]

• 1990's -2000's: Next to Leading Order (NLO) Era:

 c_0 at $\mathcal{O}(lpha_s)$ + first power corrections at $\mathcal{O}(lpha_s^0)$

• 1990's -2000's: Next to Leading Order (NLO) Era:

$$c_0$$
 at $\mathcal{O}(lpha_s)$ + first power corrections at $\mathcal{O}(lpha_s^0)$

• 2010's: Next to Next to Leading Order (NNLO) Era

$$c_0$$
 at $\mathcal{O}(\alpha_s^2)$ + first power corrections at $\mathcal{O}(\alpha_s)$ + ...

Many existing calculations not implemented yet

• 1990's -2000's: Next to Leading Order (NLO) Era:

$$c_0$$
 at $\mathcal{O}(\alpha_s)$ + first power corrections at $\mathcal{O}(\alpha_s^0)$

• 2010's: Next to Next to Leading Order (NNLO) Era

$$c_0$$
 at $\mathcal{O}(lpha_s^2)$ + first power corrections at $\mathcal{O}(lpha_s)$ + . . .

Many existing calculations not implemented yet

• More details GP talk 8/1, 9:30 AM, Intensity Frontier: Quark Flavor Physics

• 1990's -2000's: Next to Leading Order (NLO) Era:

$$c_0$$
 at $\mathcal{O}(\alpha_s)$ + first power corrections at $\mathcal{O}(\alpha_s^0)$

• 2010's: Next to Next to Leading Order (NNLO) Era

$$c_0$$
 at $\mathcal{O}(\alpha_s^2)$ + first power corrections at $\mathcal{O}(\alpha_s)$ + ...

Many existing calculations not implemented yet

- More details GP talk 8/1, 9:30 AM, Intensity Frontier: Quark Flavor Physics
- Serious problem: Leadership in theory shifting from USA to Europe
 More funding needed for intensity frontier theory!